

OCR (A) Physics A-level PAG 10.1 - Investigating Factors Affecting SHM

Practical Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

D PMTEducation

State the defining equation of SHM.

State the defining equation of SHM.

 $= -\omega^2 x$

What is simple harmonic motion?

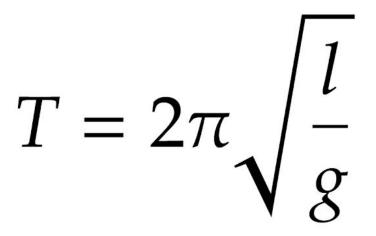
What is simple harmonic motion?

Simple harmonic motion is motion where the object's acceleration is proportional to the displacement and in the opposite direction to the displacement.

What is relationship between a pendulum's time period and its mass?

What is relationship between a pendulum's time period and its mass?

The time period of a pendulum does not depend on its mass.


State the equation used to calculate the time period of a pendulum.

State the equation used to calculate the time period of a pendulum.

What two conditions must be met when carrying out this experiment using a pendulum?

What two conditions must be met when carrying out this experiment using a pendulum?

- 1. The amplitude of oscillation should be small
 - 2. The pendulum should oscillate in a straight line

Why must the oscillations only be small when carrying out this experiment?

Why must the oscillations only be small when carrying out this experiment?

The equations are derived using a small angle approximation (<10°) and so only apply for small displacements.

How should you measure the time period of an oscillating simple pendulum?

How should you measure the time period of an oscillating simple pendulum?

Measure the time taken for the pendulum to complete 10 full oscillations. Repeat this measurement three times and then calculate an average time. Divide this average by 10 to produce the average time period for one oscillation.

PMTEducation

What could be added to your apparatus to help measure the time period accurately?

What could be added to your apparatus to help measure the time period accurately?

A fiducial marker, such as a small pin, could be added at the centre of oscillation to show exactly when an oscillation has been completed.

When plotting a graph of T² against L, what does a straight line passing through the origin demonstrate?

When plotting a graph of T² against L, what does a straight line passing through the origin demonstrate?

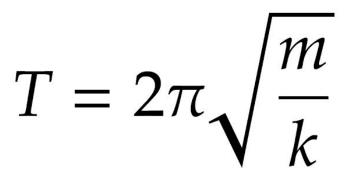
A straight line through the origin shows that T² is directly proportional to L.

How could gravitational field strength be estimated from a graph of T² against L for a simple pendulum?

How could gravitational field strength be estimated from a graph of T² against L for a simple pendulum?

$$T^2 = \frac{4\pi^2 L}{g}$$

'g' is therefore given by $4\pi^2$ /gradient


State the equation used to calculate the time period of a simple mass-spring oscillator.

State the equation used to calculate the time period of a simple mass-spring oscillator.

Describe how the time period of a simple mass-spring oscillator varies with the length of the spring.

Describe how the time period of a simple mass-spring oscillator varies with the length of the spring.

The time period of a mass-spring oscillator does not depend on the length of the spring. It only depends on the

mass and the spring constant.

When hanging a mass-spring system from a clamp stand, what safety precaution should be taken?

When hanging a mass-spring system from a clamp stand, what safety precaution should be taken?

A counterweight or G-clamp should be attached to the base of the clamp stand to provide a counter moment prevent it toppling.

 \bigcirc

PMTEducation

www.pmt.education

What safety precaution should be taken when adding masses to a spring?

What safety precaution should be taken when adding masses to a spring?

Safety goggles should be worn in case the spring snaps. It is also important to ensure you never stand with your feet directly below the masses in case they fall.

How could the spring constant be calculated from a graph of T² against m for a simple mass-spring oscillator?

How could the spring constant be calculated from a graph of T² against m for a simple mass-spring oscillator?

$$T^2 = \frac{4\pi^2 m}{k}$$

'k' is therefore given by $4\pi^2$ /gradient

If the length of a pendulum is quadrupled, how will its time period change?

If the length of a pendulum is quadrupled, how will its time period change?

The time period of pendulum is directly proportional to the square root of its length. This means that if the length is quadrupled, the time period will double.

How will the mass of a mass-spring oscillator need to be changed to halve its time period?

How will the mass of a mass-spring oscillator need to be changed to halve its time period?

The time period of a mass-spring oscillator is directly proportional to the square root of its mass. This means that the mass must be quartered for the time period to halve.

How will the time period of a mass-spring oscillator change if the spring is replaced with one of quarter its stiffness?

How will the time period of a mass-spring oscillator change if the spring is replaced with one of quarter its stiffness?

The time period is inversely proportional to the square of the spring constant. This means that if the stiffness is quarted, the time period will double.

